3.404 \(\int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=171 \[ \frac {2 \left (a^2 B+2 a A b+3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (a B+2 A b) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

2/5*a^2*A*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/3*a*(2*A*b+B*a)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/5*(3*A*a^2+5*A*b^2+1
0*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2
)*sec(d*x+c)^(1/2)/d+2/3*(2*A*a*b+B*a^2+3*B*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin
(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {4024, 4047, 3771, 2639, 4045, 2641} \[ \frac {2 \left (a^2 B+2 a A b+3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (a B+2 A b) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(2*(3*a^2*A + 5*A*b^2 + 10*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*
(2*a*A*b + a^2*B + 3*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*A*
Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*a*(2*A*b + a*B)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4024

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2*(csc[(e_.) + (f_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[(a^2*A*Cos[e + f*x]*(d*Csc[e + f*x])^(n + 1))/(d*f*n), x] + Dist[1/(d*n), Int[(d
*Csc[e + f*x])^(n + 1)*(a*(2*A*b + a*B)*n + (2*a*b*B*n + A*(b^2*n + a^2*(n + 1)))*Csc[e + f*x] + b^2*B*n*Csc[e
 + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx &=\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2}{5} \int \frac {-\frac {5}{2} a (2 A b+a B)+\left (A \left (-\frac {3 a^2}{2}-\frac {5 b^2}{2}\right )-5 a b B\right ) \sec (c+d x)-\frac {5}{2} b^2 B \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2}{5} \int \frac {-\frac {5}{2} a (2 A b+a B)-\frac {5}{2} b^2 B \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx-\frac {1}{5} \left (-3 a^2 A-5 A b^2-10 a b B\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {1}{3} \left (-2 a A b-a^2 B-3 b^2 B\right ) \int \sqrt {\sec (c+d x)} \, dx-\frac {1}{5} \left (\left (-3 a^2 A-5 A b^2-10 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 \left (3 a^2 A+5 A b^2+10 a b B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {1}{3} \left (\left (-2 a A b-a^2 B-3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 \left (3 a^2 A+5 A b^2+10 a b B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (2 a A b+a^2 B+3 b^2 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.96, size = 128, normalized size = 0.75 \[ \frac {\sqrt {\sec (c+d x)} \left (10 \left (a^2 B+2 a A b+3 b^2 B\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+6 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \sin (2 (c+d x)) (3 a A \cos (c+d x)+5 a B+10 A b)\right )}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(6*(3*a^2*A + 5*A*b^2 + 10*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 10*(2*a*A
*b + a^2*B + 3*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + a*(10*A*b + 5*a*B + 3*a*A*Cos[c + d*x])*S
in[2*(c + d*x)]))/(15*d)

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {B b^{2} \sec \left (d x + c\right )^{3} + A a^{2} + {\left (2 \, B a b + A b^{2}\right )} \sec \left (d x + c\right )^{2} + {\left (B a^{2} + 2 \, A a b\right )} \sec \left (d x + c\right )}{\sec \left (d x + c\right )^{\frac {5}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((B*b^2*sec(d*x + c)^3 + A*a^2 + (2*B*a*b + A*b^2)*sec(d*x + c)^2 + (B*a^2 + 2*A*a*b)*sec(d*x + c))/se
c(d*x + c)^(5/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 4.78, size = 487, normalized size = 2.85 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-24 A \,a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (24 a^{2} A +40 A a b +20 a^{2} B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-6 a^{2} A -20 A a b -10 a^{2} B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+10 A a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+5 a^{2} B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+15 b^{2} B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-30 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b \right )}{15 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x)

[Out]

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*A*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)
^6+(24*A*a^2+40*A*a*b+20*B*a^2)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-6*A*a^2-20*A*a*b-10*B*a^2)*sin(1/2*d
*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+10*A*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))-9*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(
1/2*d*x+1/2*c),2^(1/2))*a^2-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1
/2*d*x+1/2*c),2^(1/2))*b^2+5*a^2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),2^(1/2))+15*b^2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(
1/2*d*x+1/2*c),2^(1/2))-30*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d
*x+1/2*c),2^(1/2))*a*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x
+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^2)/(1/cos(c + d*x))^(5/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^2)/(1/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{2}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**2*(A+B*sec(d*x+c))/sec(d*x+c)**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))**2/sec(c + d*x)**(5/2), x)

________________________________________________________________________________________